Effect of Storage Temperature and Light on the Freeze-Dried Amino Acids from Sugar Beet and Sugar Cane Molasses

Document Type: Research Paper


1 Ph. D. Graduated of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Associate Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Professor of the Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

4 Professor of the Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

5 Associate Professor of the Department of Fisheries Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.


Molasses is a significant by-product of sugar beet or sugar cane refining industry. In this work, the effects of storage temperature and packaging on the contents of free amino acids (AAs) in sugar beet and sugar cane molasses after freeze drying were inquired. The effect of different variables such as, temperature (4 and 25˚C) and light (Metallized polypropylene container and Normal polypropylene container) were evaluated to determine the optimum condition for storage of AAs molasses. The results showed that metallized polypropylene container was the suitable light container to maintain AAs from sugar beet and sugar cane molasses since AAs might be denatured by the light. Furthermore, low temperature had better influences on AAs during storage since high temperature might destroy AAs therefore AAs might be stabilized for a long time at low temperature. The finding in this study might be employed for other industries such as medical and pharmaceutics industries to store the valuable AAs.


Alexander, S. P. H. (2009). Glutamate, in: Encyclopedia of Neuroscience, edited by Squire, L. R., Academic press, Cambridge Massachusetts, pp. 885-894

Arnáiz, E., Bernal, J., Martín, M. T., Nozal, M. J., Bernal, J. L. & Toribio, L. (2012). Supercritical fluid extraction of free amino acids from broccoli leaves. Journal of Chromatography A, 1250, 49-53.

Bernal, M., Ruiz, M. O., Geanta, R. M., Benito, J. M. & Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal, 283, 313–322.


Bernal, J. L., Nozal, M. J., Toribio, L., Diego, C., Mayo, R. & Maestre, R. (2008). Use of supercritical fluid extraction and gas chromatography–mass spectrometry to obtain amino acid profiles from several genetically modified varieties of maize and soybean. Journal of Chromatography A, 1192, 266-272.

Bhagavan, N. V. & Ha, C. E. (2011). Amino acids, in: Essentials of Medical Biochemistry: with clinical cases edited by Bhagavan, N.V., Ha, C. E., Elsevier, (pp. 19-27).

Dixon, J. (2011). Packaging Material: 9. Multilayer Packaging for Food and Beverages. ILSI Europe Packaging Materials Task Force, 48.

Dufresne, J., Hoang, T., Ajambo, J., Florentinus-Mefailoski, A. & Bowden, P. (2017). Freeze-dried plasma proteins are stable at room temperature for at least 1 year. Clinical Proteomics, 14, 35.

Fabiani, A., Versari, A., Parpinello, G. P., Castellari, M. & Galassi, S. (2002). High-Performance Liquid Chromatographic Analysis of Free Amino Acids in Fruit Juices Using Derivatization with 9-Fluorenylmethyl-Chloroformate. Journal of Chromatographic Science, 40, 14-18.

Febriyenti, F., Mohamed, N., Hamdan, M. R., Md Salleh, S. N. & Baie, S. B. B. (2014). Effect of freeze drying and spray drying processes to amino acids and fatty acids contents in Haruan (Channa Striatus) extract. International Journal of Drug Delivery, 6, 301-304.

Filipčev, B., Mišan, A., Šarić, B. & Šimurina, O. (2016). Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. International Journal of Food Sciences and Nutrition, 67, 249-256.

Fombong, F. T.,  Borght, M. V. D. & Broeck, J. V. (2017). Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect. Ruspolia differens. Insects, 8(3), 102.

Golbahar, J., Altayab D. D. & Carreon, E. (2014). Short-Term Stability of Amino acids and Acylcarnitines in the Dried Blood Spots Used to Screen Newborns for Metabolic Disorders. Journal of Medical Screening, 21(1), 5–9.

Grib, H., Persin, M., Gavach, C., Piron, D. L., Sandeaux, J. & Mameri, N. (2000). Amino acid retention with alumina g nanofiltration membrane. Journal of Membrane Science, 172, 9–17.

Han, J., Higgins, R., Lim, M. D., Lin, K., Yang, J. & Borchers, C. H. (2017). Short-term stabilities of 21 amino acids in dried blood spots. Clinical Chemistry, 64, 2.

Hassan, S. W., Umar, R. A., Maishanu, H. M., Matazu, I. K., Faruk, U. Z. & Sani, A. A. (2007). The effect of drying methods on the nutrient and non-nutrients composition of leaves of Gynandropis gynandra (Capparaceae). Asian Journal Biochemistry, 2, 349-353.

Honma, T., Kaneko, A., Ohba, H. & Ohyama, T. (2012). Effect of application of molasses to paddy soil on the concentration of cadmium and arsenic in rice grain. Soil Science and Plant Nutrition, 58(2), 255-260.

Hubbard, A. J., Binder, D. K. (2016). Glutamate metabolism, in: Astrocytes and Epilepsy edited by Hubbard, A. J., Binder, D. K., Academic press, Cambridge Massachusetts, (pp. 197-224).

Kaehler, S. & Kennish, R. (1996). Summer and winter comparisons in the nutrition value of marine marcoalgae from Hong Kong. Botanica Marina, 39, 11-17.

Khan, S. H., Rasool, G. & Nadeemm, S. (2006). Bioconversion of Cane Molasses into Amino Acids. Pakistan Journal of Agricultural Sciences, 43, 157-161.

Martin-Orue, C., Bouhallab, S. & Garem, A. (1998). Nanofltration of amino acid and peptide solutions: mechanisms of separation. Journal of Membrane Science, 142, 225-233.

Matsuura-endo, C., Ohara-takada, A., Chuda, Y., Ono, H., Yada, H., Yoshida, M., Kobayashi, A., Tsuda, S., Takigawa, S., Noda, T., Yamauchi, H. & Mori, M. (2006). Effects of Storage Temperature on the Contents of Sugars and Free Amino Acids in Tubers from Different Potato Cultivars and Acrylamide in Chips. Bioscience Biotechnology Biochemistry, 70 (5), 1173–1180.

Mee, J. M. L., Brooks, C. C. & Stanley, R. W. (1979). Amino Acid and Fatty Acid Composition of Cane Molasses, J. Sci. Food Agric., 30, 429-432. 

Rearik, D. E. & Mckey, C. (1996). The behavior of amino acids in chromatographic molasses desugarization. Conference on sugar process research New Orleans, LA, http://www.arifractal.com/images/files/The-behavior-of-amino-acids-in-chromatographic-molasses-desugarization-systems.pdf (accessed 15june 2018).

Robledo, D. & Pelegrin, Y. F. (1997). Chemical and mineral composition of six potentially edible seaweed species of Yucatán. Botanica Marina, 40, 301-306.

Norziah, M. H. & Ching, C. Y. (2000). Nutritional composition of edible seaweed Gracilaria changgi. Food Chemistry. 68, 69-76.

Strnadova, K. A., Holub, M., Muhl, A., Heinze, G., Ratschmann, R. & Mascher, H. (2007). Long-term stability of amino acids and acylcarnitines in dried blood spots. Clinical Chemistry, 53, 717-722.

Saric, L. C., Filipcev, B. V., Simurina, O. D., Plavsic, D. V., Saric, B. M.,  Lazarevic, J. M. & Milovanovic, I. L. (2016). Sugar beet molasses: properties and applications in osmotic dehydration of fruits and vegetables, Food and Feed Research, 43, 135-144.

Samavat, S. & Samavat, S. (2014). The effects of folic acid and sugar cane molasses on yield and qualities of tomato. International Research Journal of Applied and Basic Sciences, 8(3), 266-268.

Shadung, K. G., Mphosi, M. S. & Mashela, P. W. (2012). Influence of drying method and location on amino acids and mineral elements of Sternocera orissa Buguet 1836 (Coleoptera: Buprestidae) in South Africa. African Journal of Agricultural Research, 7(46), 6130-6135.

Suzuki, T., Ohsugi, Y., Yoshie, Y., Shirai, T. & Hirano, T. (1996). Dietary fiber content, water holding capacity and binding capacity of seaweeds. Fish Science, 62, 454-461.

Valli, V., Gomez-Caravaca, A. M., Caboni, M. F., Bordoni, A., Nunzio, M. D. & Danesi, F. (2012). Sugar cane and Sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal Agriculture Food Chemistry, 60, 12508–12515.

Varaeea, M., Honarvar, M., Eikani, M. H., Omidkhah, M. R. & Moraki, N. (2019). Supercritical fluid extraction of free amino acids from sugar beet and sugar cane molasses. The Journal of Supercritical Fluids, 144, 48–55.

Wang, G., Zhang, C., Sun, M., Zhang, X., Wu, C. & Wu, Y. (2017). Separation of mixed amino acids by BMED process using porous SPES and SPSf cation exchange membranes. Separation and Purification Technology, doi: http://dx.doi.org/10.1016/j.seppur.2017.07.020.

Wijayanti, I., Surti, T., Anggo, A. D. & Susanto, E. (2016). Effect Different Packaging on Proximate and Lysine Content of Milkfish [Chanos chanos (Forsskål, 1775)] Floss During Storage. Aquatic Procedia, 7, 118 – 124

Yassoralipour, A., Bakar, J., Abdul Rahman, R., Abu Bakar, F. & Golkhandan, E. (2013). Effect of Different Temperatures on the Free Amino Acids, Physico-Chemical and Microbial Changes during Storage of Barramundi (Lates calcarifer) Fillets. Advance Journal of Food Science and Technology, 5(7), 822-828.

York, M. J. (2017). Clinical Pathology, in: A Comprehensive Guide to Toxicology in Nonclinical Drug Development (Second Edition) edited by Faqi, A. S., Academic press, Cambridge Massachusetts, (pp. 325-374).

Zhu, G., Zhu, X., Xiao, Z., Zhou, Z., Feng, N. & Niu, Y. (2015). A review of amino acids extraction from animal waste biomass and reducing sugars extraction from plant waste biomass by a clean method. Biomass Conversion and Biorefinery, 5 (3), 309–320.